d03 — Partial Differential Equations d03pec

NAG C Library Function Document

nag pde parab 1d_Kkeller (d03pec)

1 Purpose

nag pde parab_1d keller (d03pec) integrates a system of linear or nonlinear, first-order, time-dependent
partial differential equations (PDEs) in one space variable. The spatial discretization is performed using
the Keller box scheme and the method of lines is employed to reduce the PDEs to a system of ordinary
differential equations (ODEs). The resulting system is solved using a Backward Differentiation Formula
(BDF) method.

2 Specification

#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_keller (Integer npde, double *ts, double tout,

void (*pdedef) (Integer npde, double t, double X, const double ul],
const double ut[], const double ux[], double res[], Integer xires,
Nag_Comm *comm) ,

void (*bndary) (Integer npde, double t, Integer ibnd, Integer nobc,
const double u[], const double ut[], double res[], Integer *ires,
Nag_Comm *comm) ,

double ul], Integer npts, const double x[], Integer nleft, double acc,
double rsave[], Integer Irsave, Integer isave[], Integer lisave, Integer itask,
Integer itrace, const char *outfile, Integer *ind, Nag_Comm *comm,
Nag_D03_Save *saved, NagError xfail)

3 Description

nag pde parab_1d keller (d03pec) integrates the system of first-order PDEs

Gi(x,t,U, U, U,)=0, i=1,2,...,npde. (1)
In particular the functions G; must have the general form
npde U.
G = pP,— . i=1,2,..., npde, <x<bt>t, 2
i Jz:; ot +Q1 l npde axxx — 0 ()

where P;; and Q; depend on x, ¢, U, U, and the vector U is the set of solution values
T
U 1) = [Ui(5,0, - Unpaelss0)] 3)

. . o . ou
and the vector U, is its partial derivative with respect to x. Note that P;; and Q; must not depend on o

The integration in time is from ¢, to z,,, over the space interval a < x < b, where a = x; and b = x,,,; are

npts

the leftmost and rightmost points of a user-defined mesh x;, x,, .. The mesh should be chosen in

s Xnpts-
accordance with the expected behaviour of the solution.

The PDE system which is defined by the functions G; must be specified in a function pdedef supplied by
you.

The initial values of the functions U (x,#) must be given at t = #,. For a first-order system of PDEs, only
one boundary condition is required for each PDE component U;. The npde boundary conditions are
separated into n, at the left-hand boundary x = a, and n, at the right-hand boundary x = b, such that
n, + n, = npde. The position of the boundary condition for each component should be chosen with care;
the general rule is that if the characteristic direction of U; at the left-hand boundary (say) points into the
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interior of the solution domain, then the boundary condition for U; should be specified at the left-hand
boundary. Incorrect positioning of boundary conditions generally results in initialization or integration
difficulties in the underlying time integration functions.

The boundary conditions have the form:

Gr(x,t,U,U)=0 atx=a, i=12,...,n, (4)
at the left-hand boundary, and

GXx,t,U,U)=0 atx=b, i=12,...,m (5)
at the right-hand boundary.

Note that the functions G,L and Gf must not depend on U,, since spatial derivatives are not determined
explicitly in the Keller box scheme (see Keller (1970)). If the problem involves derivative (Neumann)
boundary conditions then it is generally possible to restate such boundary conditions in terms of
permissible variables. Also note that G- and G¥ must be linear with respect to time derivatives, so that the
boundary conditions have the general form

npde
L L .
ZE,/W-FS =0, i=1,2,...,n, (6)
at the left-hand boundary, and
npde
ZE,I/aj-FSR—O i=1,2,...,m (7)

at the right-hand boundary, where E,LJ, Efj, SL, and SR depend on x, ¢ and U only.
The boundary conditions must be specified in a function bndary provided by you.
The problem is subject to the following restrictions:

(1) g < tou, SO that integration is in the forward direction;

(i) P;; and Q; must not depend on any time derivatives;

(iii)) The evaluation of the function G; is done at the mid-points of the mesh intervals by calling the
function pdedef for each mid-point in turn. Any discontinuities in the function must therefore be at
one or more of the mesh points x, Xy, ..., Xppes

(iv) At least one of the functions P;; must be non-zero so that there is a time derivative present in the
problem.

In this method of lines approach the Keller box scheme (see Keller (1970)) is applied to each PDE in the
space variable only, resulting in a system of ODEs in time for the values of U; at each mesh point. In total
there are npde x npts ODEs in the time direction. This system is then integrated forwards in time using a
BDF method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific Software
Systems (ed J C Mason and M G Cox) 59—72 Chapman and Hall

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems using
the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375-397

Keller H B (1970) A new difference scheme for parabolic problems Numerical Solutions of Partial
Differential Equations (ed J Bramble) 2 327-350 Academic Press

Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
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5  Arguments
l: npde — Integer Input
On entry: the number of PDEs in the system to be solved.

Constraint: npde > 1.

2: ts — double * Input/Output
On entry: the initial value of the independent variable z.
Constraint: ts < tout.

On exit: the value of ¢ corresponding to the solution values in u. Normally ts = tout.

3: tout — double Input

On entry: the final value of ¢ to which the integration is to be carried out.

4 pdedef — function, supplied by the user External Function

pdedef must compute the functions G; which define the system of PDEs. pdedef is called
approximately midway between each pair of mesh points in turn by nag pde parab 1d keller
(d03pec).

Its specification is:

void pdedef (Integer npde, double t, double x, const double ul],
const double ut[], const double ux[], double res[], Integer *ires,
Nag_Comm *comm)

1: npde — Integer Input
On entry: the number of PDEs in the system.

2: t — double Input

On entry: the current value of the independent variable .

3: x — double Input

On entry: the current value of the space variable x.

4: u[npde] — const double Input
On entry: ufi — 1] contains the value of the component U;(x,t), for i =1,2,..., npde.
5: ut[npde| — const double Input
oU,(x,t
On entry: ut[i — 1] contains the value of the component %, fori=1,2,...,npde.
6: ux[npde| — const double Input
oU;(x,t
On entry: ux[i — 1] contains the value of the component %, fori=1,2,...,npde.
X
7: res[npde| — double Output
On exit: res[i — 1] must contain the ith component of G, for i = 1,2,. .., npde, where G is
defined as
npde
oU;
G = p.—/ 8
=3 ®)
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i.e., only terms depending explicitly on time derivatives, or

npde
oU;
G = E p.—/ . 9
=2 Firg T ©)
i.e., all terms in equation (2).

The definition of G is determined by the input value of ires.

ires — Integer * Input/Output

On entry: the form of G; that must be returned in the array res. If ires = —1, then
equation (8) above must be used. If ires = 1, then equation (9) above must be used.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions, as described below:

ires =2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER _STOP.
ires =3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires = 3, then nag_pde parab 1d keller (d03pec) returns to the calling function
with the error indicator set to fail.code = NE_FAILED_DERIV.

comm — Nag Comm * Communication Structure

Pointer to structure of type Nag_Comm,; the following members are relevant to pdedef.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag_pde parab _1d keller (d03pec)
these pointers may be allocated memory by the user and initialized with various
quantities for use by pdedef when called from nag_pde parab 1d keller (d03pec).

5: bndary — function, supplied by the user External Function

bndary must compute the functions G,~L and G,R which define the boundary conditions as in
equations (4) and (5).

Its specification is:

d03pec.4

void bndary (Integer npde, double t, Integer ibnd, Integer nobc,

const double u[l, const double ut[], double res[], Integer *ires,
Nag_Comm *comm)

npde — Integer Input
On entry: the number of PDEs in the system.

t — double Input

On entry: the current value of the independent variable .
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ibnd — Integer Input

On entry: determines the position of the boundary conditions. If ibnd = 0, bndary must
compute the left-hand boundary condition at x = a. Any other value of ibnd indicates
that bndary must compute the right-hand boundary condition at x = b.

nobc — Integer Input

On entry: specifies the number of boundary conditions at the boundary specified by ibnd.

u[npde] — const double Input
On entry: u[i — 1] contains the value of the component U;(x, ) at the boundary specified
by ibnd, for i = 1,2,..., npde.

ut[npde] — const double Input

Ui(x, 1)

. ou; .
On entry: ut[i — 1] contains the value of the component —a at the boundary specified

by ibnd, for i =1,2,..., npde.

res[nobc| — double Output
On exit: res[i — 1] must contain the ith component of G" or G*, depending on the value of
ibnd, for i = 1,2, ..., nobc, where G* is defined as
npde
ouU;
Gt=>N EL", 10
' — Yot (10)

=
i.e., only terms depending explicitly on time derivatives, or
npde

U,
Gf:ZEfJTZJ—l-Sf, (11)
j=1

i.e., all terms in equation (6), and similarly for Gf.
The definitions of G* and G® are determined by the input value of ires.
ires — Integer * Input/Output

On entry: the form G,~L (or GZR) that must be returned in the array res. If ires = —1, then
equation (10) above must be used. If ires = 1, then equation (11) above must be used.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions, as described below:

ires =2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER _STOP.
ires =3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires = 3, then nag_pde parab_1d keller (d03pec) returns to the calling function
with the error indicator set to fail.code = NE_FAILED_DERIV.

comm — Nag Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to bndary.
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11:

12:

13:

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag_pde parab_1d keller (d03pec)
these pointers may be allocated memory by the user and initialized with various
quantities for use by bndary when called from nag_pde parab_1d keller (d03pec).

u[npde x npts] — double Input/Output
On entry: the initial values of U(x,?) at ¢ = ts and the mesh points x[j — 1], for j = 1,2,..., npts.

On exit: ulnpde X j + i] will contain the computed solution at ¢ = ts.

npts — Integer Input
On entry: the number of mesh points in the interval [a, b].

Constraint: npts > 3.

x[npts] — const double Input

On entry: the mesh points in the spatial direction. x[0] must specify the left-hand boundary, a, and
x[npts — 1] must specify the right-hand boundary, b.

Constraint: X[0] < x[1] < --- < x[npts — 1].

nleft — Integer Input
On entry: the number n, of boundary conditions at the left-hand mesh point x[0].

Constraint: 0 < nleft < npde.

acc — double Input

On entry: a positive quantity for controlling the local error estimate in the time integration. If E(i,j)
is the estimated error for U; at the jth mesh point, the error test is:

|E(i,j)| = ace x (1.0 + |u[npde x j + i]|).

Constraint:. acc > 0.0.

rsave[lrsave] — double Communication Array
If ind = 0, rsave need not be set on entry.

If ind = 1, rsave must be unchanged from the previous call to the function because it contains
required information about the iteration.

Irsave — Integer Input

On entry: the dimension of the array rsave as declared in the function from which
nag pde parab_1d keller (d03pec) is called.

Constraint: Irsave > (4 x npde + nleft + 14) x npde x npts + (3 x npde + 21) x npde +

7 X npts + 54.

isave[lisave] — Integer Communication Array
If ind = 0, isave need not be set on entry.

If ind = 1, isave must be unchanged from the previous call to the function because it contains
required information about the iteration. In particular:

isave[0]

Contains the number of steps taken in time.
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14:

16:

isave[l]

Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

isave[2]
Contains the number of Jacobian evaluations performed by the time integrator.

isave[3]
Contains the order of the last backward differentiation formula method used.

isave[4]
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves an ODE residual evaluation followed by a back-substitution using the LU
decomposition of the Jacobian matrix.

lisave — Integer Input

On entry: the dimension of the array isave as declared in the function from which
nag pde parab_1d keller (d03pec) is called.

Constraint: lisave > npde x npts + 24.

itask — Integer Input
On entry: specifies the task to be performed by the ODE integrator.
itask = 1
Normal computation of output values u at ¢ = tout.
itask = 2
Take one step and return.
itask =3
Stop at the first internal integration point at or beyond ¢ = tout.

Constraint: 1 < itask < 3.

itrace — Integer Input

On entry: the level of trace information required from nag pde parab 1d keller (d03pec) and the
underlying ODE solver as follows:

itrace < —1

No output is generated.
itrace = 0

Only warning messages from the PDE solver are printed .
itrace = 1

Output from the underlying ODE solver is printed . This output contains details of Jacobian
entries, the nonlinear iteration and the time integration during the computation of the ODE
system.

itrace = 2

Output from the underlying ODE solver is similar to that produced when itrace = 1, except
that the advisory messages are given in greater detail.

itrace > 3

Output from the underlying ODE solver is similar to that produced when itrace = 2, except
that the advisory messages are given in greater detail.
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You are advised to set itrace =0 .

17:  outfile — const char * Input
On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

18:  ind — Integer * Input/Output
On entry: must be set to 0 or 1.
ind=0

Starts or restarts the integration in time.
ind =1

Continues the integration after an earlier exit from the function. In this case, only the
arguments tout and fail should be reset between calls to nag pde parab _1d keller (d03pec).

Constraint: 0 < ind < 1.

On exit: ind = 1.

19:  comm — Nag Comm * Communication Structure

The NAG communication argument (see Section 2.2.1.1 of the Essential Introduction).

20:  saved — Nag D03 Save * Communication Structure
Note: saved is a NAG defined type (see Section 2.2.1.1 of the Essential Introduction).

saved must remain unchanged following a previous call to a d03 function and prior to any
subsequent call to a d03 function.

21:  fail — NagError * Input/Output
The NAG error argument (see Section 2.6 of the Essential Introduction).

6  Error Indicators and Warnings

NE_ACC_IN_DOUBT

Integration completed, but a small change in acc is unlikely to result in a changed solution.
ace = (value).

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_FAILED DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This
could be due to your setting ires = 3 in pdedef or bndary.

NE_FAILED START

acc was too small to start integration: ace = (value).

NE_FAILED_STEP
Error during Jacobian formulation for ODE system. Increase itrace for further details.

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as
ts: ts = (value).
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Underlying ODE solver cannot make further progress from the point ts with the supplied value of
acc. ts = (value), acc = (value).
NE_INT
On entry, ind is not equal to 0 or 1: ind = (value).
ires set to an invalid value in call to pdedef or bndary.
On entry, itask is not equal to 1, 2, or 3: itask = (value).

On entry, nleft = (value).
Constraint: nleft > 0.

On entry, npde = (value).
Constraint: npde > 1.

On entry, npts = (value).
Constraint: npts > 3.

NE_INT 2
On entry, lisave is too small: lisave = (value). Minimum possible dimension: (value).
On entry, Irsave is too small: Irsave = (value). Minimum possible dimension: (value).

On entry, nleft > npde: nleft = (value), npde = (value).

NE_INTERNAL_ERROR

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_NOT_CLOSE_FILE

Cannot close file (value).

NE_NOT_STRICTLY_ INCREASING

On entry, mesh points x appear to be badly ordered: i = (value), x[i — 1] = (value), j = (value),
x[j — 1] = (value).

NE_NOT_WRITE_FILE

Cannot open file (value) for writing.

NE_REAL

On entry, acec = (value).
Constraint: ace > 0.0.

NE_REAL 2
On entry, tout — ts is too small: tout = (value), ts = (value).

On entry, tout < ts: tout = (value), ts = (value).

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_USER_STOP

In evaluating residual of ODE system, ires = 2 has been set in pdedef or bndary. Integration is
successful as far as ts: ts = (value).
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7  Accuracy

nag_pde parab 1d keller (d0O3pec) controls the accuracy of the integration in the time direction but not the
accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh points
and on their distribution in space. In the time integration only the local error over a single step is
controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the
effect of varying the accuracy argument, acc.

8 Further Comments

The Keller box scheme can be used to solve higher-order problems which have been reduced to first-order
by the introduction of new variables (see the example problem in nag_pde parab_1d keller ode (d03pkc)).
In general, a second-order problem can be solved with slightly greater accuracy using the Keller box
scheme  instead of a  finite-difference scheme (nag_pde parab 1d fd (d03pcc) or
nag pde parab_1d fd ode (d03phc) for example), but at the expense of increased CPU time due to the
larger number of function evaluations required.

It should be noted that the Keller box scheme, in common with other central-difference schemes, may be
unsuitable for some hyperbolic first-order problems such as the apparently simple linear advection equation
U,+ aU, = 0, where a is a constant, resulting in spurious oscillations due to the lack of dissipation. This
type of problem requires a discretization scheme with upwind weighting (nag_pde parab_1d_cd (d03pfc)
for example), or the addition of a second-order artificial dissipation term.

The time taken depends on the complexity of the system and on the accuracy requested.

9 Example

This example is the simple first-order system

oU, +8U1 +5‘U2 B
ot ox ox

0,

U U U
0Uy | Uy Vs _

Ot Ox Ox 0,

for t € [0,1] and x € [0, 1].
The initial conditions are
Ui(x,0) =exp(x), U,(x,0)=sin(x),
and the Dirichlet boundary conditions for U; at x =0 and U, at x = 1 are given by the exact solution:

U, (x, 1) = H{exp(x + t) + exp(x — 3¢)} + {{sin(x — 37) — sin(x + 1)},

Uy(x,1) = exp(x — 31) — exp(x + 1) + ${sin(x + 1) + sin(x — 3¢)}.
9.1 Program Text

/* nag_pde_parab_1d_keller (dO3pec) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.

*/

#include <stdio.h>

#include <math.h>

#include <nag.h>

#include <nag_stdlib.h>

#include <nagd03.h>

#include <nagx0l.h>

static void pdedef (Integer, double, double, const doublel],
const double[], const double[], doublel[],
Integer *, Nag_Comm *);
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static void bndary(Integer, double, Integer, Integer,
const double[], const double[], doublell],
Integer *, Nag_Comm *);
static void exact(double, Integer, Integer, double *, double *);
static void uinit(Integer, Integer, double *, double *);

#define U(I,J) ulnpdex*((J)-1)+(I)-
#define EU(I,J) eulnpde*((J)-1)+(I

int main(void)
{
const Integer npde=2, npts=41, nleft=1, negn=npde*npts,
lisave=neqgn+24, nwkres=npde#* (npts+21+3+*npde)+7*npts+4,
lrsave=1ll*neqgn+(4*npde+nleft+2)*neqn+50+nwkres;
Integer exit_status, i, ind, it, itask, itrace;
double acc, tout, ts;
double *eu=0, #*rsave=0, *u=0, *x=0;
Integer #*isave=0;
NagError fail;
Nag_Comm comm;
Nag_DO03_Save saved;

/* Allocate memory */
if ( !(eu = NAG_ALLOC(npde*npts, double)) |
! (rsave = NAG_ALLOC(lrsave, double)) |
! (u = NAG_ALLOC (npde*npts, double)) ||
! (x = NAG_ALLOC (npts, double)) ||

! (isave = NAG_ALLOC(lisave, Integer)) )

Vprintf ("Allocation failure\n");
exit_status = 1;
goto END;

¥

itrace = 0;
acc = le-6;

INIT_FAIL(fail);
exit_status = 0;

Vprintf ("nag_pde_parab_1d_keller (dO3pec) Example Program Results\n\n'

Vprintf (" Accuracy requirement =%10.3e", acc);
Vprintf (" Number of points = %$31d\n\n", npts);

/* Set spatial-mesh points =*/

for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);

Vprintf (" x ") ;

Vprintf ("%$10.4£%10.4£%10.4£%10.4£%10.4f\n\n",
x[4], x[12], x[20], x[28], x[36]);

ind = 0;
itask = 1;
uinit(npde, npts, x, u);

/* Loop over output value of t =*/

ts = 0.0;

tout = 0.0;

for (it = 0; it < 5; ++it)
{

tout = 0.2%(it+1);
/* nag_pde_parab_1d_keller (dO3pec).
* General system of first-order PDEs, method of lines,
* Keller box discretisation, one space variable
*
/
nag_pde_parab_1d_keller (npde, &ts, tout, pdedef, bndary, u, npts,
nleft, acc, rsave, lrsave, isave, lisave,

[NP3660/8]
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itrace, 0, &ind, &comm, &saved, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_pde_parab_1d_keller (dO3pec).\nss\n",
fail.message);
exit_status = 1;
goto END;
¥

/* Check against the exact solution */
exact (tout, npde, npts, x, eu);

Vprintf (" t = %5.2f\n", ts);
Vprintf (" Approx ul");
Vprintf ("%10.4£%10.4£%10.4£%10.4£%10.4£f\n",
u(1,5), U(1,13), U(1,21), U(1,29), U(1,37));

Vprintf (" Exact ul");
Vprintf ("%$10.4£f%10.4f%10.4£f%10.4£%10.4£f\n",
EU(1,5), EU(1,13), EU(1,21), EU(1,29), EU(1,37));

Vprintf (" Approx u2");
Vprintf ("%$10.4£%10.4£%10.4£%10.4£%10.4f\n",
u(2,5), U(2,13), U(2,21), U(2,29), U(2,37));

Vprintf (" Exact u2");
Vprintf ("%10.4f%10.4f%10.4f%10.4£f%10.4f\n\n",
EU(2,5), EU(2,13), EU(2,21), EU(2,29), EU(2,37));

}
Vprintf (" Number of integration steps in time = %61d\n", isave[O0]);
Vprintf (" Number of function evaluations = %61d\n", isavel[ll]);
Vprintf (" Number of Jacobian evaluations =%61d\n", isavel[2]);
Vprintf (" Number of iterations = %61d\n\n", isave[4]);
END:

if (eu) NAG_FREE (eu) ;

if (rsave) NAG_FREE (rsave) ;
if (u) NAG_FREE (u);

if (x) NAG_FREE (x) ;

if (isave) NAG_FREE (isave) ;

return exit_status;
}
static void pdedef (Integer npde, double t, double x, const double ull]l,
const double udot[], const double dudx[], double
res[], Integer xires, Nag_Comm #*comm)

{
if (*ires == -1)
{
res[0] = udot[0];
res[1l] = udot[1];
} else {
res[0] = udot[0] + dudx[0] + dudx[1];
res[1l] = udot[1l] + 4.0*xdudx[0] + dudx[1];
}
return;
}

static void bndary(Integer npde, double t, Integer ibnd, Integer nobc,
const double ul[]l, const double udot[], double res[],
Integer *ires, Nag_Comm #*comm)
if (ibnd == 0)
if (*ires == -1)
res[0] = 0.0;

} else {
res[0] = ul[0] - 0.5%(exp(t) + exp(-3.0%t))

d03pec.12 [NP3660/8]
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}

} else

- 0.25*(sin(-3.0%*t)

{

if (*ires == -1) {
res[0]

} else {
res[0]

- 0.5*%(sin(1.0 - 3.0%t)

¥
¥

return;

}

static void uinit(Integer npde,

{

= 0.0

= ufll]

I

- exp(l1.0 - 3.0%*t)

/* Routine for PDE initial values */

Integer i

for (i =

return;

}

static void

{

i

1;

exact (double t,

i <= npts;
exp(x[i-11);
sin(x[i-11);

/* Exact solution

Integer i
for (i =
{
u(1,

u(z,

1;
i)

i)

++1) {

Integer npde,

double *u)

- sin(t));

+ exp(t + 1.0)
+ sin(t + 1.0));

Integer npts,

double =*x,

Integer npts,

(for comparison purposes)

i <= npts;

= exp(x[i-1]

++1i)

0.5*%(exp(x[i-1] + t)
0.25%(sin(x[i-1]

0.5%(sin(x[1-1] -

}

return;

9.2 Program Data

None.

9.3 Program Results

nag_pde_parab_1d_keller (

Accuracy requirement =

X

t = 0.20
Approx ul
Exact wul
Approx u?2
Exact u2

t = 0.40
Approx ul
Exact ul
Approx u?2
Exact u2

t = 0.60

Approx ul
Exact ul

[NP3660/8]

0

.1000

.7845
.7845
.8352
.8353

.6481
.6481
.5216
.5217

.6892
.6892

0

0.
0.
-1.
-1.

- 3.0%*t)

3.0*t)

dO3pec)

- sin(x[i-1]

t
- 3.0*t) - exp(x[i-1] +
)

*/

+ exp(x[i-1]

+ sin(x[i-1]

+

+ t

double =*x,

3.0%t))

)i
t) +

)i

Example Program Results

1.000e-06 Number of points

.3000

.0010
.0010
.8159
.8160

8533
8533
6767
6767

.8961
.8962

0.

1
1.
-0.
-0.

-1.
-1.

5000

.2733

2733
8367
8367

L1212
L1212

8934
8935

L1747
.1747

0.

7000

.6115
.6115
.9128
.9129

.4627
.4627
.1917
.1917

.5374
.5374

0

2

2.
-1.
-1.

-2.
-2.

41

.9000

.0281
0281
0609
0609

.8903
.8903
5944
5945

.9989
.9989

double =*u)

+

d03pec
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Approx u2 =2
Exact u2 -2
t = 0.80
Approx ul 0.
Exact ul 0.
Approx u2 =2
Exact u2 =2
t = 1.00
Approx ul 1.
Exact ul 1.
Approx u2 -2
Exact u2 -2

.0047
.0048

8977
8977

.3403
.3405

2470
2470

.6229
.6232

-2.
-2.

1.
1.
-3.
-3.

3434
3436

.1247
.1247
-2.
-2.

8675
8677

5206
5205
3338
3340

-2.
-2.

1.
1.
-4.
-4.

7677
7678

.4320
.4320
-3.
-3.

5110
5111

8828
8829
1998
2001

Number of integration steps in time =

Number of function evaluations
Number of Jacobian evaluations
Number of iterations =

323

399
13

-3.
-3.

149

3002
3003

.8349
.8349
-4.
-4.

2960
2961

.3528
.3528
-5.
-5.

2505
2507

-3.
-3.

-5

-5.

9680
9680

.3514
.3512
.2536

2537

.9519
.9518
-6.
-6.

5218
5219
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